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Barium aluminosilicate glasses are being investigated as matrix 

materials in high-temperature ceramic composites for structural 

applications. Kinetics of crystallization of two refractory glass 

compositions in the barium aluminosilicate system have been studied by 

differential thermal analysis ( D T A ) ,  X-ray diffraction (XRD), and 

scanning electron microscopy (SEMI. From variable heating rate DTA, 

the crystallization activation energies for glass compositions (wt.%) 

10Ba0-38A1~0~-51SiO~-lMoO~ (glass A )  and 39Ba0-25A1203-35SiO~-lMoO3 

(glass B) were determined to be 553 and 558 kJ/mol, respectively. On 

thermal treatment, the crystalline phases in glasses A and B were 

identified as mullite (3A1203-2SiO2) and hexacelsian 

(BaO.A1203.2SiO2), respectively. Hexacelsian is a high-temperature 

polymorph which is metastable below 159OOC. It undergoes structural 
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transformation into the orthorhombic form at 

large volume change which is undesirable for 

A process needs to be developed where stable 

rather than hexacelsian, precipitates out as 

glass B. 

- 3OO0C accompanied by a 
structural applications. 

monoclinic celsian, 

the crystal phase in 

*NASA Resident Research Associate. 



INTRODUCTION 

Refractory glass compositions in the barium aluminosilicate system 

are being considered as matrix material in the fabrication of ceramic- 

fiber reinforced ceramic-matrix composites for high temperature 

structural applications in the high efficiency, high performance 

aerospace propulsion and power systems of the future. Information or. 

the crystallization behavior of these glasses is needed for convertlng 

them into more refractory glass ceramics. The objective of this study 

was to investigate the crystallization kinetics and other properties 

pertinent to the use in composite processing of two glass compositions 

belonging to the highly refractory BaO-Al203-Si02 system. The kinetics 

of crystallization have been evaluated using differential thermal 

analysis. The crystalline phases in the heat treated glasses were I 

identified by X-ray diffraction and the morphologies of crystal growth 

were observed in the scanning electron microscope. 

EXPERIMENTAL PROCEDURE 

Barium aluminosilicate (BAS) glasses, of the compositions listed 

in Table I, were melted in a continuous electric arc furnace. The 

glass samples were fabricated in the form of bars, rods, and flakes. 

Thermal expansion coefficient(a), glass transition temperature (Tg), 

and softening point(T,) were measured using an Orton automatic 

recording dilatometer. Glass rods of lcm diameter were annealed for 

2h at 80OoC. The rods were cut to 2.54cm lengths and run at a rate of 

- 
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3OC/min in static air. Densities of annealed glass samples were 

measured by the immersion method in water. Measurements were made on 

several samples of each glass. 

Crystallization kinetics of the glasses was studied by 

differential thermal analysis (DTA) using a Perkin-Elmer DTA-1700 

system interfaced with a computerized data acquisition and 

manipulation system. Glass flakes were crushed and sieved into various 

size fractions. The crystallization peak temperatures of the glasses 

were measured in the DTA at various scan rates from 2.5 to 40°C/’min in 

flowing argon. Samples of glass B in the form of bulk pieces (-2mm) 

and powder (<60 mesh) were run in the DTA whereas a 20 to 60 mesh 

powder sample of glass A was used. Glass transition temperatures were 

also obtained from DTA, and compared with the values derived from 

dilatometry. 

To study the crystallization of the glasses, rods of each glass 
- 

were sliced into discs (-2mm thick by lcm diameter) and heat treated 

in air in an electric furnace. The samples were held isothermally for 

1 or 10 hours at various temperatures from below the glass transition 

to above the highest crystallization peak temperature at 5OoC 

intervals. 

identified by x-ray diffraction (XRD) using a Phillips ADP-3600 

Phases crystallizing in the heat treated glasses were 

diffractometer equipped with a crystal monochromator and copper Ku 

radiation. Several samples were analyzed before and after being 

crushed. 

The morphology of the crystalline phases developed by heat 

treatment of bulk glass samples was examined in a Cambridge Stereoscan I 
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200 scanning electron microscope (SEM). Duplicate heat treated samples 

were mounted in epoxy, ground and polished to a 0.5 pm finish. After 

polishing, the samples were lightly etched with HF to reveal the 

crystalline microstructure. A thin layer of gold was evaporated onto 

the sample surface before viewing in the SEM. 

RESULTS AND DISCUSSION 

Positions of the glass compositions used in the present study in 

the BaO-Al203-SiO2 phase diagram1 are shown in Fig. 1. Values of 

density, thermal expansion coefficient, glass transition temperature 

(Tq), and softening point (Ts) as obtained from dilatometry for the 

BAS glasses are given in Table 11. Note that the viscosity 

corresponding to the dilatometric softening point, Ts, is about 

Pa.s in contrast with a value of Pa.s at the ASTM or "Littleton" 

softening point of glass. Glass B has higher values of density, 

thermal expansion coefficient, transition temperature and softening 

point than glass A probably due to the higher baria and lower silica 

contents of glass B. 

be useful in determining the processing parameters for the fiber 

reinforced glass composites. 

The knowledge of these physical properties will 

Typical DTA traces for the crystallization of glass compositions A 

and B are shown in Fig. 2. The effect of heating rate on the DTA 

crystallization peak is illustrated in Figs. 3 through 5. The 

crystallization exotherm shifts to higher temperature with increase in 

heating rate. The powder sample of glass A shows a sharp, symmetrical 

exothermic peak whereas the powder sample of glass B showed a very 
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broad crystallization peak. This could have been caused by 

crystallization of a second phase in the bulk of the glass B. In order 

to investigate this further, samples of glass B with different surface 

areas were run in the DTA.’ A significant difference in peak 

temperature was seen for the samples of different sizes. The powder 

samples crystallized at lower temperatures than the bulk samples. 

Alw, the cystallization peaks of the powder samples are sharper and 

more distinct. This is probably due to the higher surface area of the 

powder samples which results in a greater number of nucleation sites 

for the crystals to form and grow from. Values of the crystallization 

peak temperature at various scan rates for the different glass samples 

are given in Table 111. The Tg values obtained from the DTA traces are 

also shown. The Tg values obtained from DTA are higher than those from 

dilatometry probably due to the fact that unannealed samples were used 

in the DTA scans. 

A variable heating rate DTA method was used to evaluate the 

kinetic parameters for crystallization of the glasses. The kinetic 
model‘of Bansal et a121 was used which is expressed as: 

where Tp is the’peak maximum temperature, €3 the heating rate, E the 

activatian energy, R‘the gas constant, and v the frequency factor. 

The crystallizhtion kinetic par’meters (E and Y)- are related to the 

reaction rate constant (k) through the Arrhenius-type expression: 

5 



k v exp[-E/RTl 

Equation ( 1) is an extension of the Johnson-Mehl-Avrami3 t 4  isothermal 

kinetic model for use in non-isothermal methods. It has been 

demonstrated in earlier studies 5-7 that the crystallization kinetic 

parameters obtained from the isothermal method and the non-isothermal 

technique using eq.(l) are in excellent agreement. In the derivation 

of eq.(l) it has been assumed that the rate of reaction is maximum at 

the peak which is a valid assumption €or power-compensated 

differential scanning calorimetry (DSC) but not for DTA. However, the 

DTA peak corresponds to the point at which the heat balance at the 

sample thermocouple is zero. The maximum rate of reaction normally 

occurs at a point prior to the DTA peak temperature. So long as a 

consistent point is chosen, e.g., peak temperature, onset temperature, 

etc., to represent a given process in a series of DTA traces recorded 

at different scan rates, activation energies in agreement with the DSC 

results would be obtained. However, the attempt frequency, v, would 

depend on the choice of that representative temperature. Hammetter and 

Loehman8 obtained quite similar results from DSC and D?A techniques 

for the crystallization of a complex lithium silicate glass 

composition. This implies that DTA can be used to evaluate 

crystallization activation energy at temperatures beyond the range of 

DSC. The plots of ln(TP2/s) vs. l/Tp for the crystallization of 

glasses A and B are shown in Fig. 6. The plots are linear indicating 

the applicability of the kinetic model of Bansal et a12. The values of 

the crystallization kinetic parameters for the two glasses evaluated 
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from linear least squares fitting of the experimental data from eq.(l) 

are presented in Table IV. Surprisingly, the values of the 

crystallization activation energy for the two glasses are about the 

same even though the.compositions and the structures of the phases 

crystallizing out in the two glasses are quite different as seen from 

the XRD results presented below. 

The results of XRD analysis of the heat treated glasses are 

summarized in Table V. Selected powder XRD patterns of the heat 

treated samples are shown in Figs. 7 and 8 .  Both glasses remain 

amorphous up to 95OOC. After lh at this temperature, glass A exhibits 

a trace of mullite and glass B contains hexacelsian. Mullite is the 

only phase detected in samples of glass A. It occurs in increasing 

amounts as the treatment temperature and time increase. Substantial 

amounts of amorphous phase remain in glass A even after heating for 

10h at 115OoC. After lh at 95OoC, hexacelsian is detected in glass B 

and the amount of this phase increases with treatment temperature and 

time. After lh at 1O5O0C, a second phase (celsian) is seen in the 

powder XRD pattern. Celsian is present in small amounts in all samples 

heat treated above this temperature. Only small amounts of amorphous 

phase remain above 1000°C. Bahat9 has also reported the presence of 

hexacelsian as the crystalline phase in BaO-Al203-Si02 glass ceramic 

containing lwt% of Moo3 as the nucleating agent. 

Figure 9 shows the difference in surface versus bulk 

crystallization in glass B. The XRD pattern obtained from the surface 

of the heat treated specimen shows only hexacelsian phase. The 

difference in relative peak intensities is probably due to orientation 
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of the surface crystals. The XRD powder pattern of the same sample 

exhibits the peaks for hexacelsian at the correct positions and 

expected relative intensities and also reveals the presence of a small 

amount of monoclinic celsian phase. These results correlate well with 

the DTA results obtained for different particle sizes of glass B. 

Figures 10 and 11 show SEM photomicrographs of polished and etched 

samples of each glass after different heat treatments. In glass A 

heated at ll5OoC for 1 and 10h, clusters of mullite crystals are seen. 

The clusters are larger and more numerous in the 10h sample. Samples 

of glass B heated at 1000 and 115OoC for lh show a different 

morphology. A t  1000°C, t h e  sample is not  completely crystallized. 

Large dark areas of glassy material remain. In the crystallized 

regions, crystals of 

sample is almost fully crystallized and the crystal size has increased 

to 20 to 3 0 ~ .  From electron microscopy and energy dispersive 

spectroscopy (Fig. 12), hexacelsian was found18 to be the main 

crystalline phase in glass B heated for lh at 8OO0C and for 48h at 

1000°C. A small amount of mullite is also present along the grain 

boundaries of the hexacelsian crystals. 

5 to 1 0 ~  sizes are present. At 115OoC, the 

- 

Celsian, BaA12Si208, exists in two polymorphs. Hexacelsian is the 

high temperature phase and celsian the low temperature form. 

Hexacelsian has a hexagonal structure and celsian is monoclinic. The 

average linear thermal expansion coef f icientslO of hexacelsian ( 300 - 
1000°C) and celsian (20 - 1000°C) are -8.0 x 1G'6 and 2.29 x 10'6/oC, 

respectively. The celsian to hexacelsian phase change occurs at 

-159OOC. At temperatures below -159OoC, hexacelsian is metastable. 



Bahatll has studied the heterogeneous nucleation of alkaline earth 

feldspar (RO-Al203-Si02 where R = Ba, Sr, or Ca) glasses by a wide 

variety of nucleating agents. It is generally b e l i e ~ e d l ~ , ~ ~  that for 

heterogeneous nucleation, a close similqrity between the lattice 

parameters of the nucleating agent and the nucleated crystal is an 

important parameter in determining the effectiveness of the agent. 

However, Bahatll observed that the nucleation by various nucleating 

agent's in the RO-Al203-Si02 glasses had no correlation with the 

crystal structure of the catalyst, thus questioning the importance of 

close structural geometric fit between the catalyst and the nucleated 

crystal in these glasses. The metastable forms (hexagonal and 

orthorhombic) of the alkaline earth feldspars nucleated more readily 

from the glasses than the stable forms (monoclinic and triclinic). 

This was ascribed to the simpler structures of the high symmetry 

modifications. The hexagonal forms are roughly built14 of alternate 

double sheets of tetrahedra and a single layer of R2+ cations normal 

to the c-axis. In contrast, the low symmetry forms15 are made of 

three-dimensional networks in which the A 1  and Si are at least 

partially ordered in a special distribution . Due to these structural 
differences, the high symmetry forms have lower kinetic barriers for 

nucleation. 

Unfortunately, the hexacelsian to celsian transformation is very 

sluggish. Bahat16 has investigated the kinetics of hexacelsian to 

celsian transformation. The activation energy of crystal growth of 

celsian from hexacelsian wasofound to be quite low (20.1 ,+ 20 % 

kcal/mol) suggesting that the kransformation does not involve the 
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breaking of Si-0 or A1-0 bonds. The solid solubilitieslO of silica in 

the hexagonal and monoclinic modifications of celsian are about 4 and 
I 2 wt$, respectively. During the transformation of hexacelsian into the 
I 

monoclinic form, the excess silica must precipitate out. The kinetics 

of exsolution of silica may control the rate of the overall 

transformation. The transformation of hexacelsian into the monoclinic 

modification is very sluggish probably due to the slow rate of 

diffusion of silica. Also, at -3OOOC hexacelsian undergoes a rapid, 

reversible displacive tran~formationl~ into the orthorhombic form 

accompanied by a large volume change of 3% or more. On thermal cycling 

this would lead to microcracking of composites with glass B as the 

matrix which is unacceptable. Celsian does not undergo any phase 

change and is the desired phase for structural glass-ceramic 

composites. It is, therefore, necessary to create the necessary 

conditions for the crystallization of celsian rather than hexacelsian 

in the glass upon heat treatment if the BAS glass is to be used as the 

matrix material for high temperature composites. This is the subject 

of research currently in progress18. 

I 

~ 

SUMMARY AND CONCLUSIONS 

I Crystallization kinetics of two refractory barium aluminosilicate 
I 

glasses has been investigated by variable heating rate differential 

I thermal analysis. The crystallization activation energies of the glass 

compositions (wt%) 10Ba0-39A1~0~-49SiO~-lMoO~ (glass A) and 

I 37Ba0-26A1~0~-34SiO~-lMoO~ (glass B) are evaluated to be 553 and 558 

kJ/mol, respectively. On thermal treatment, mullite (3A1203-2SiO2) and 
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hexacelsian (BaO.Pl203.2Si02) crystallized out in glasses A and B, 

respectively. Hexacelsian is stable above -1590OC and metastable below 

this temperature. At -3OOOC hexacelsian undergoes a rapid, reversible 

displacive transformation into orthorhombic form accompanied by a 

large volume change of -3% which is undesirable as a matrix material 

for structural composites. Monoclinic celsian is the stable phase 

below 

be developed so that celsian, rather than hexacelsian, precipitates 

out in glass B on heat treatment. 

- 
159OOC and is the desired phase. Processing conditions need to 
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TABLE 11. - VALUES OF DENSITY, AVERAGE THERMAL EXPANSION 
TABLE I. - COMPOSITIONS (WEIGHT % )  OF THE BARIUM COEFFICIENT, GLASS TRANSITION TEMPERATURE, AND 

component Glass A 

Batch Analyzed 

BaO 10 I 10.3 

Glass B 

Batch Analyzed 

39 I 36.7 

A1203 I 38 I 39.3 I 25 I 26.2 

Glass 
composition 

Si02 51 49.4 35 34.0 

Moos I 1 I 1.0 I 1 I 1.0 

Density, cr*xl06,t Tg,* Ts,* 
o c  "C g/cm3 ec-1 

DILATOMETRIC SOFTENING POINT OF THE 
BARIUM ALUMINOSILICATE GLASSES 

A 2.797r0.003 3.66 850 922 

B 3.220i0.003 5.95 877 926 

TABLE 111. - DTA GLASS TRANSITION AND CRYSTALLIZATION 
PEAK TEMPERATURES AT VARIOUS SCAN RATES 
FOR THE BARIUM ALUMINOSILICATE GLASSES 

Tp, 
'C 

994 
1008 
1023 
1039 
1053 
1062 

1002 
1024 
1037 
1064 
1074 
1082 

1083 
1100 
1121 
1144 
1161 
1168 

TABLE IV. - KINETIC PARAEIETERS FOR 
THE CRYSTALLIZATION OF BARIUM 

ALUMINOSILICATE GLASSES 

Tit 
"C 

---- 
---- ---- 
887 
893 
898 

---- 
---- ---- ---- 
878 
888 

---- 
882 
885 
888 
892 

---- 

Glass 
composition 

Scan rate, 6 
"Chin 

B 
(powder) 

A 
(powder ) 

B 
(bulk) 

2.5 
5 
10 
20 
30 

'From DTA. 

Temperature. 
*C 

20 . 

2.5 

10 
20 
30 
40 

Time. Crystal Appearance Crystal Appearance 
hr phase. phase' 

Glass 
kJhol 

1.2XlO~O 

B (Powder) 2.2~1019 

B (Bulk) 558 

TABLE V. - CRYSTALLINE PHASES ALm PHYSICAL APP-CE OF THE BARIUU 
ALUMINOSILICATE GLASSES AFTER VARIOUS HW\T TREATIIELITS 

Treatment I Glass A I Glass B 

850 I 1 I Amorphous I Tan-clear I Amorphous I Tan-clear 
vith streaks 

900 1 Amorphous Tan-clear Amorphous Tan-clear 

9 5 0  1 
1 1 Mu;;ite 1 Re8;z;wn 

1 BaAlgzizOg 1 Mottle-brown vith streaks 

translucent 

1000 I 1 1 Mullite I Red-brown I BaAlZSilOg I Mottle brown 
clear hc owwe 

1050 
opaque 

1100 

1150 1 Mullite Red-brown BaA126120g Mottle brown 

1150 Mullite Gray-brown BaAlZSi20~ Mottle brown 

1 I I clear 1 hc. c 1 opaque 

translucent hc. c opaque 
*From XRD. 
hc - hexacelsion 

c - celsian 

ORIGINAL PAGE IS 
OF POOR QUALKY 
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(1713') 

10 30 BA 50 70 BA6 90 

A '2'3 BaO M I G H T  PERCENT 

AI203 E I G H T  PERCENT 

FIGURE 1. - PHASE DIAGRM OF THE BaO-AI203-SiO2 SYSTER WING THE WSITlONS OF T I E  GLASS COlPOSlTlONS USED I N  THE 
PRESENT STUDY. 
EDITED BY R.K. RESER. THE A E R .  CERM. S K . ,  COLURBUS. OH. P. 2M.I 

(TAKEN FRCM FIGURE 4544 PHA-SE DLAGRAlrs FOR CERMISTS-1975 SUPPLEENT BY E.R. LEVIN AND H.F.kMURDIE. 
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I- a 

7.5 - - A (POWDER) -- B (POWDER) ---- B (BULK) 5.0- 

:: 
W 
A 

8 
c' e 

7 

8 
W 

GLASS A-POWDER 
I N  ARGON 40 OC/HIN 

I 1025 1150 
TERERATURE. OC 

FIGURE 3.  - INFLUENCE OF HEATING RATE ON THE DTA 
EXOTHERM FOR THE CRYSTALLIZATION OF BARIUM AL- 
UMINOSILICATE GLASS (POVDER) OF CM9oSITION A 
I N  ARGON. 

\ u  

I v 
950 1100 1250 

TEMPERATURE. OC 

FIGURE 4. - EFFECT OF HEATING RATE ON THE DTA CRYSTAL- 
LIZATION PEAK FOR THE BARIUM ALUIIINOSILICATE GLASS 
(BULK) OF COlPOSlTlON B UNDER ARGON FLOV. 
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GLASS B-POWDER 
I N  ARGON 

950 lo00 1050 1100 11% 
TWERATURE. OC 

FIGURE 5. - EFFECT OF HEATING RATE ON M DTA CRYSTALLIZATION E X O M M  OF BARIUM ALlHII(0- 
SILICATE GLASS (WWDER) OF ClWOSITION B 111 AR6011. 

14 - 
13 - - a 

N' 

t 
n 12 - 
c - 

6.8 7.0  7.2 7.4 7.6 7.8 8.0 

10'IAp. K - l  

FIGURE 6. - PLOTS OF ~nrr~* /e i  AGAINST RECIPROCAL OF 
PEAK EMTRATURE FOR ME CRYSTALLlZATlON OF BARlull 
ALlHIWOSILICATE 6LASSES OF COPOSITIONS A AND B. 
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7m 250 c PILILLITE 
LYY 

1150. 10 HR 150 - 

I 
0 '  I I I I I 

r 
150 - 1150, 1 HR 

I I I I I 

0 '  I I I I I 
10 24 38  52 66 80 

2 e. DEG 

GLASS OF CWOSlT lON A AFTER VARIOUS HEAT TREATRENTS AS INDICATED. 
FIGURE 7. - POWDER X-RAY DIFFRACTION PATTERNS OF BARIUM ALUMINOSILICATE 

500- 
400 - 1150, 10 HR v B ~ A ~ ~ S ~ ~ O ~ - H E X A C E L S I A N  

300 -- BaA12SI 208-CELSIAN 
200 
100 

0 

-- 

1150, 1 HR 300 - 

V 1o00. 1 HR 

100 

0 
10 24 38  52 66 8 0  

2 e, DEG 

FIGURE 8. - POWDER X-RAY DIFFRACTION SPECTRA OF BARlUn ALMlWSlLlCATE GLASS OF 
CWOSlT lON B AFTER DIFFERENT T H E R M  TREATENTS AS S H W .  
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V 

I 
SURFACE 

L 

10 24 38 5 2  66 80 
2 e. DEG 

FIGURE 9. - X-RAY DIFFRACTION PATTERNS SHOVING ME DEVELopllENT OF DIFFERENT 
CRYSTALLINE PHASES On THE SURFACE AND I N  T I E  BULK OF A BbRlvl ALvllW 
SILICATE GLASS OF CM'OSITIOW B ON MATING FOR 10 HR AT 1150 OC. 

1150 OC, 1 HR 1150 oc, 10 HR 

FIGURE 10. - SCANNING ELECTRON MICROGRAPHS OF BARIUM ALUMINOSILICATE GLASS OF COWPOSITION A 
AFTER HEATING AT 1150 OC FOR 1 HR AND 10 HR. 

19 



OC, 1 HR 1150 OC, 1 HR 

FIGURE 11. - SCANNING ELECTRON RICROGRAPHS OF BARIUR ALURINOSILICATE GLASS OF CWOSIT ION B 
HEATED FOR 1 HR AT lo00 AND 1150 OC. 
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FIGURE 12. - TRANSMISSION ELECTRON RICROGRAPH AND ENERGY DISPERSIVE 
SPECTRA OF GLASS 
loo0 OC. 

B HEATED FOR 1 HR AT 800 OC AND FOR 48 HR AT 
THE W I L L  CRYSTALS ALONG THE GRAIN BOUNDARIES OF LARGE 

HEXACELSIAN CRYSTALS ARE S E E N ~ ~  TO BE OF RULLITE. 
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